Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Hematol Oncol ; 2022 Aug 06.
Article in English | MEDLINE | ID: covidwho-1976711

ABSTRACT

A multicenter retrospective study was designed to assess clinical outcome of COVID-19 in patients with hematological malignancies (HM) following treatment with anti-SARS-CoV-2 convalescent plasma (CP) or standard of care therapy. To this aim, a propensity score matching was used to assess the role of non-randomized administration of CP in this high-risk cohort of patients from the Italian Hematology Alliance on COVID-19 (ITA-HEMA-COV) project, now including 2049 untreated control patients. We investigated 30- and 90-day mortality, rate of admission to intensive care unit, proportion of patients requiring mechanical ventilatory support, hospitalization time, and SARS-CoV-2 clearance in 79 CP recipients and compared results with 158 propensity score-matched controls. Results indicated a lack of efficacy of CP in the study group compared with the untreated group, thus confirming the negative results obtained from randomized studies in immunocompetent individuals with COVID-19. In conclusion, this retrospective analysis did not meet the primary and secondary end points in any category of immunocompromized patients affected by HM.

2.
Clin Hematol Int ; 3(3): 77-82, 2021 Sep.
Article in English | MEDLINE | ID: covidwho-1533606

ABSTRACT

The use of convalescent plasma (CP) from individuals recovered from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a promising therapeutic modality for the coronavirus disease 2019 (COVID-19). CP has been in use for at least a century to provide passive immunity against a number of diseases, and was recently proposed by the World Health Organization for human Ebola virus infection. Only a few small studies have so far been published on patients with COVID-19 and concomitant hematological malignancies (HM). The Italian Hematology Alliance on HM and COVID-19 has found that HM patients with COVID-19 clinically perform more poorly than those with either HM or COVID-19 alone. A COVID-19 infection in patients with B-cell lymphoma is associated with impaired generation of neutralizing antibody titers and lowered clearance of SARS-CoV-2. Treatment with CP was seen to increase antibody titers in all patients and to improve clinical response in 80% of patients examined. However, a recent study has reported impaired production of SARS-CoV-2-neutralizing antibodies in an immunosuppressed individual treated with CP, possibly supporting the notion of virus escape, particularly in immunocompromised individuals where prolonged viral replication occurs. This may limit the efficacy of CP treatment in at least some HM patients. More recently, it has been shown that CP may provide a neutralising effect against B.1.1.7 and other SARS-CoV-2 variants, thus expanding its application in clinical practice. More extensive studies are needed to further assess the use of CP in COVID-19-infected HM patients.

3.
Microorganisms ; 8(8)2020 Jul 26.
Article in English | MEDLINE | ID: covidwho-1389446

ABSTRACT

Since February 2020, Italy has been seriously affected by the SARS-CoV-2 pandemic. To support the National Health Care system, naso-pharyngeal/oropharyngeal swabs collected from suspected cases of Teramo province, Abruzzo region, are tested at Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, for the presence of SARS-CoV-2 RNA. Out of 12,446 tested individuals, 605 returned positive results at least once, with prevalence significantly higher in men. A reduction of the level of viral RNA in the first swab per each positive patient collected over time was also observed. Moreover, 81 patients had at least one positive sample and two final negative tests: positivity in swabs lasted from 14 to 63 days, with a median value of 30 days. This shows the potential for the virus to coexist with patients for a long time, although we highlighted intermittent positivity in several cases. The evolution of the SARS-CoV-2 epidemiological situation and knowledge on viral shedding should be closely monitored, to interpret the findings correctly and adjust accordingly the surveillance activities.

4.
Vet Microbiol ; 252: 108933, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-966338

ABSTRACT

There is strong evidence that severe acute respiratory syndrome 2 virus (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, originated from an animal reservoir. However, the exact mechanisms of emergence, the host species involved, and the risk to domestic and agricultural animals are largely unknown. Some domestic animal species, including cats, ferrets, and minks, have been demonstrated to be susceptible to SARS-CoV-2 infection, while others, such as pigs and chickens, are not. Importantly, the susceptibility of ruminants to SARS-CoV-2 is unknown, even though they often live in close proximity to humans. We investigated the replication and tissue tropism of two different SARS-CoV-2 isolates in the respiratory tract of three farm animal species - cattle, sheep, and pigs - using respiratory ex vivo organ cultures (EVOCs). We demonstrate that the respiratory tissues of cattle and sheep, but not of pigs, sustain viral replication in vitro of both isolates and that SARS-CoV-2 is associated to ACE2-expressing cells of the respiratory tract of both ruminant species. Intriguingly, a SARS-CoV-2 isolate containing an amino acid substitution at site 614 of the spike protein (mutation D614G) replicated at higher magnitude in ex vivo tissues of both ruminant species, supporting previous results obtained using human cells. These results suggest that additional in vivo experiments involving several ruminant species are warranted to determine their potential role in the epidemiology of this virus.


Subject(s)
Organ Culture Techniques , Respiratory System/virology , Ruminants/virology , SARS-CoV-2/physiology , Viral Tropism , Virus Replication , Angiotensin-Converting Enzyme 2/genetics , Animals , Cattle/virology , Host Specificity , SARS-CoV-2/genetics , Sheep/virology , Swine/virology
5.
One Health ; 10: 100135, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-71930

ABSTRACT

The current pandemic is caused by a novel coronavirus (CoV) called SARS-CoV-2 (species Severe acute respiratory syndrome-related coronavirus, subgenus Sarbecovirus, genus Betacoronavirus, family Coronaviridae). In Italy, up to the 2nd of April 2020, overall 139,422 confirmed cases and 17,669 deaths have been notified, while 26,491 people have recovered. Besides the overloading of hospitals, another issue to face was the capacity to perform thousands of tests per day. In this perspective, to support the National Health Care System and to minimize the impact of this rapidly spreading virus, the Italian Ministry of Health involved the Istituti Zooprofilattici Sperimentali (IZSs), Veterinary Public Health Institutes, in the diagnosis of SARS-CoV-2 by testing human samples. The Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise is currently testing more than 600 samples per day and performing whole genome sequencing from positive samples. Sequence analysis of these samples suggested that different viral variants may be circulating in Italy, and so in Abruzzo region. CoVs, and related diseases, are well known to veterinarians since decades. The experience that veterinarians operating within the Public Health system gained in the control and characterization of previous health issues of livestock and poultry including avian flu, bluetongue, foot and mouth disease, responsible for huge economic losses, is certainly of great help to minimize the impact of this global crisis.

SELECTION OF CITATIONS
SEARCH DETAIL